

Practical Issues in Multiple Sclerosis

Amr Hassan MD, FEBN

Associate professor of Neurology Cairo University 2017

AGENDA

- Immunopathogenesis
- Diagnosis
- Biomarkers
- Treatment options
- Optimization of treatment

How Multiple Sclerosis Works Demyelinization

How Multiple Sclerosis Works T-Cells and Monocytes

Damaged Nerve

Damaged Myelin

Exposed Axon

T-cell

Monocytes

More Than a Demyelinating Disease

Helper T-Cell Differentiation

More Than a Demyelinating Disease

Inflammation and Neurodegeneration in MS

Disease Stage	Dominant Component	Main Clinical Outcome	MRI
Early	INFLAMMATION Edema Demyelination (axonal loss, brain atrophy)	Relapses	Gd enhancement
Late	NEURODEGENERATI ON Severe axonal injury Permanent tissue loss	Disability	Black Holes Gd enhancement Brain Atrophy

SEP	Predominant pathological mechanism	Accumulation of disability
RR	inflammation	stepwise
SP/PP	neurodegeneration	progressive

Multiple Sclerosis Diagnosis

PRESENTING SYMPTOMS IN MS	Total %
SENSORY LOSS IN LIMBS	30.7
VISUAL LOSS	15.9
MOTOR WEAKNESS	14.2
DIPLOPIA	6.8
GAIT DISTURBANCE	4.8
INCOORDINATION	2.9
SENSORY LOSS-FACE	2.8
LHERMITTE'S	1.8
VERTIGO	1.7
BLADDER SYMPTOMS	1
AUTE TRANSVERSE MYELOPATHY	0.7
PAIN	0.5
OTHERS	2.5
POLYSYMPTOMATIC	13.7

Magnetic resonance imaging T2 weighted images showing plaques

Mc Donald criteria for MS

ATTACKS	LESIONS	ADDITIONAL CRITERIA FOR DIAGNOSIS MS
2 or more	2 or more	None. Clinical evidence alone will suffice
2 or more	1 lesion	Dissemination in space on MR (or await further clinical attack implicating a different CNS site)
1 attack	2 lesions	Dissemination in time on MR (or await further clinical attack implicating a different CNS site)
1 attack	1 lesion	Dissemination in space and time (or await further clinical attack implicating a different CNS site)
0 attack progression from onset		 One year of disease progression (retrospective or prospective) AND at least 2 out of 3 criteria: Dissemination in space in the brain Dissemination in space in the spinal cord based on 2 or more T2 lesions Positive CSF

CSF examination

IgG index:

• [IgG_{CSF}/albumin_{CSF}]/[IgG_{serum}/albumin_{serum}]

MS patients elevated IgG index (>1.7). (normal is <0.77)

Oligoclonal Bands in CSF

Pattern-VEP

Laboratory **Red Flags**

Famous Dictum

"The most common reason for falsely attributing a patient's symptoms to multiple sclerosis is faulty interpretation of the magnetic resonance imaging."

> Loren A. Rolak 2007

Biomarkers

BIOMARKERS

GENETIC/IMMUNOGENETIC:

Biomarkers specified via genomics and immunogenetic techniques.

LABORATORY:

 All other biomarkers that can be measured in body fluids.

• Biomarkers provided by imaging techniques.

B. Laboratory Biomarkers

- I. Biomarkers of Immunological Activation
- **II.** Biomarkers of Neuroprotection
- **III.** Biomarkers of BBB disruption
- **IV.** Biomarkers of demyelination
- V. Biomarkers of Oxidative Stress
- VI. Biomarkers of Axonal Damage
- **VII.** Biomarkers of Glial Activation Dysfunction
- **VIII. Biomarkers of Remyelination Repair**
- IX. Biomarkers of Therapeutic Response
- X. Prognostic Biomarkers
- XI. Emering biomarkers

BIOMARKERS

EDSS indicates Expanded Disability Status Scale; MS, multiple sclerosis.

Relapsing remitting multiple sclerosis (R.R.M.S.)

Symptomatic ttt

Genitosphincteral	
problems	

ANTI-INFLAMMATORY

NEUROPROTECTION

REMYELINATION

NEURO RESTORATION

Current and future MS therapies

Product labelling (including indications, safety information and monitoring requirements) may vary by country; for more detailed information, refer to your local prescribing information for recommendations and contraindications for each DMT

Dates are approximate as approval dates vary between different countries; for drugs beyond 2014, approval dates are estimated, based on current regulatory status. *Not yet approved by the FDA; negative opinion adopted by CHMP in January 2014, opinion being re-examined as of 21 February 2014. [†]Not currently approved by the EMA or FDA. [‡]Approved by the EMA, rejected by the FDA in December 2013. [§]Not yet approved by FDA or EMA. [¶]Not currently

BMT

Mycophenolate mofetil

- Fingolimod – Natalizumab Mitoxantrone

B Interferons – Glatirmar Acetate Teriflunomide – Dimethyl fumarate - Fingolimod*

Pivotal Studies

	Avonex	Betaferon	Rebif	Copaxone
CIS	CHAMPS	BENEFIT	ETOMS REFLEX	PRECISE
RRMS	MSCRG	IFNB MS Study Group Neurology 1993/1995	PRISMS	Johnson Trial Neurology 1995
SPMS	IMPACT	European SPMS Trial North American SPMS Trial	SPECTRIMS	

1b

Glycosylation

Comparison of Interferonβ Products Used in MS

Type of IFN	Route	Dose	Schedule	
Avonex (IFNβ-1a)	Intra- muscular	30 µg	Once a week	

Proposed IFNβ mechanism of action

APC=antigen-presenting cell; T=T cell; IL=interleukin; B=B cell; MMP=matrix metalloproteinase; BBB=blood-brain barrier; Ag=antigen; T_H=T helper cell; TGF=transforming growth factor; MF=macrophage Figure adapted from: Wiendl H et al. *Expert Opin Investig Drugs*. 2003;12:689-712

Side Effects of AVONEX, Betaseron, Rebif, and Copaxone in RRMS

	Side Effects	AVONEX	Betaseron	Rebif	Copaxone
	FLS	\checkmark	V	٧	
N/N	Depression	V	V	٧	
P	Liver function	V	V	٧	
0	ISR	minimal	V	٧	V
F.	Lipoatrophy				V
CALL SALL EMERGENCYT	IPIR				V

Lipoatrophy

MRI image of the thinning of subcutaneous fat distribution

 $\sqrt{-}$ mentioned in Warnings and Precautions section of prescribing information

FLS=flu-like symptoms; ISR=injection site reaction; IPIR=immediate postinjection reaction, eg, chest pain and chest tightness (or 911 reaction).
AVONEX (IM IFNβ-1a) [prescribing information]. Cambridge, MA: Biogen Idec; 2012; Betaseron (SC IFNβ-1b) [prescribing information]. Emeryville, CA: Bayer Healthcare Pharmaceuticals; 2013; Rebif (SC IFNβ-1a) [summary of product characteristics]. Rockland, MA: EMD Serono; 2011;
Copaxone (glatiramer acetate) [prescribing information]. Kansas City, MO: Teva Pharmaceuticals; 2009.

The Global QUASIMS Study: Disability Progression

Mean EDSS Was Comparable Among IFNβ Groups at Baseline and After 1 and 2 Years of Treatment

The Global QUASIMS Study: Relapse-Free Patients Over 2 Years

The Percentage of <u>Relapse-Free Patients</u> Was <u>Comparable</u> Among IFNβ Groups

*AVONEX[®] vs IFNβ-1b 22, *P*=0.0017; [†]AVONEX[®] vs IFNβ-1a 44, *P*=0.0002; [‡] IFNβ-1b vs IFNβ-1a 44, *P*=0.0061. Limmroth et al. WCN, 2005. Abstract P529.
The Global QUASIMS Study: Change in the EDSS Score After Therapy Change

No Efficacy Benefit Is Seen When Switching From One IFNβ Product to Another

IFN B, Interferon beta; GA, glatiramer acetate; Ter, teriflunomide; DMF, dimethyl fumarate.

Escalation:

Lateral switch:

Algorithm for the management of relapsing remitting multiple sclerosis.

AGENDA

- Immunopathogenesis
- Diagnosis
- Biomarkers
- Treatment options
- Optimization of treatment

THANK YOU